Category Archives: Space

SpaceX Successfully Launches The U.S. Air Force’s Secretive X-37B Unmanned Spacecraft Just Before Hurricane Irma Reaches Florida

SpaceX launched the Pentagon’s mysterious X-37B orbital space drone just before the Hurricane Irma hit Florida.

While people prepared for Hurricane Irma, the 45th Space Wing successfully launched a SpaceX Falcon 9 launch vehicle from Kennedy Space Center’s Launch Complex 39A at 10 a.m. on Sept. 7.

The Falcon 9, a two-stage rocket designed by SpaceX for reliable and cost-efficient transport of satellites and SpaceX’s Dragon spacecraft, carried into orbit a U.S. Air Force X-37B Orbital Test Vehicle (OTV), marking the fifth space flight for the unmanned orbital vehicle program and its first onboard a Falcon 9.

The X-37B program completed its fourth classified mission on May 7, 2017, landing after 718 days in orbit and extending the total number of days spent in orbit to 2,085.

Approximately eight minutes after the launch, SpaceX successfully landed the Falcon 9 first-stage booster back at Landing Zone 1 on Cape Canaveral Air Force Station.

“I’m incredibly proud of the 45th Space Wing’s contributions to the X-37B program,” Brig. Gen. Wayne Monteith, 45th Space Wing commander, said in a public release. “This marks the fifth successful launch of the OTV and its first onboard a Falcon 9. A strong relationship with our mission partners, such as the Air Force Rapid Capabilities Office, is vital toward maintaining the Eastern Range as the World’s Premiere Gateway to Space.”

Whilst the “OTV is designed to demonstrate reusable spacecraft technologies for America’s future in space and operate experiments, which can be returned to and examined on Earth,” the details of its mission remain classified.

Since its first flight in 2010, several theories about the role of the X-37B have emerged: according to someone, the orbital drone is a space-based weapons platform carrying a weaponized re-entry vehicle that could be released over or near a specific target; others believe the OTV is a space ISR (Intelligence Surveillance Reconnaissance) platform able to carry a wide variety of sensor packages in its internal cargo bay; some analysts believe that the X-37B is *simply* a research platform used to perform tests in space environment.

OTV-5 was launched by Launch Complex 39A (LC-39A) at Kennedy Space Center, a historic pad that has been used to support U.S. space programs since the early 1960s: originally built to support the Apollo program, LC-39A supported the first Saturn V launch (Apollo 4), and many subsequent Apollo missions, including Apollo 11 in July 1969. Beginning in the late 1970s, LC-39A was modified to support space shuttle launches, hosting the first and last shuttle missions to orbit in 1981 and 2011, respectively.
In 2014, SpaceX signed a 20-year lease with NASA for the use of Launch Complex 39A. Extensive modifications to LC-39A have been made to support launches of both the Falcon 9 and Falcon Heavy launch vehicles.

LC-39 along with the rest of KSC facility’s buildings built after Hurricane Andrew in 1992 are supposed to withstand winds between 130 and 135 miles per hour.


Two NASA’s WB-57F Jets Are About To Chase The Total Solar Eclipse. Here is How And Where.

NASA is about to launch two retrofitted WB-57F aircraft to follow the shadow of the moon. The last of a long series of interesting missions…

NASA still operates three WB-57Fs, configured for air sampling and the other for photography, radar and thermal recce. The first two, NASA926 and 928 have been flying research missions since the early ’60s, whereas NASA927 is a more recent addition to the fleet, having joined NASA Johnson Space Center (JSC) in Houston, Texas, in 2013.

Based at Ellington Field, Texas, they are often deployed to different bases, both at home and abroad; to undertake missions in support of scientific projects (focusing on hurricanes, radiation impact on clouds, atmospheric data gathering, tropical storm generation analysis, and so on).

For instance, on Aug. 21, 2017, the total solar eclipse that for most of the observers will last less than two and half minutes, for one team of NASA-funded scientists, will last over seven minutes. Indeed, the eclipse will be chased by two retrofitted WB-57F jet planes: NASA926 and NASA927.

According to NASA, Amir Caspi of the Southwest Research Institute in Boulder, Colorado, and his team will use two of NASA’s WB-57F research jets to observe the eclipse from twin telescopes mounted on the noses of the planes in order to capture the clearest images of the Sun’s outer atmosphere — the corona — to date and the first-ever thermal images of Mercury, revealing how temperature varies across the planet’s surface.

The two aircraft have filled a FPL to follow the route below:

The FPL of NASA 927 (the same filed by NASA 926): a 4h 30m trip across the U.S. (credit:

This is the route that will be followed by NASA 926 and NASA 927 to chase the total solar eclipse. (credit: FlightAware).

“Due to technological limitations, no one has yet directly seen nanoflares, but the high-resolution and high-speed images to be taken from the WB-57F jets might reveal their effects on the corona. The high-definition pictures, captured 30 times per second, will be analyzed for wave motion in the corona to see if waves move towards or away from the surface of the Sun, and with what strengths and sizes,” says an official NASA release.

“The two planes, launching from Ellington Field near NASA’s Johnson Space Center in Houston will observe the total eclipse for about three and a half minutes each as they fly over Missouri, Illinois and Tennessee. By flying high in the stratosphere, observations taken with onboard telescopes will avoid looking through the majority of Earth’s atmosphere, greatly improving image quality. At the planes’ cruising altitude of 50,000 feet, the sky is 20-30 times darker than as seen from the ground, and there is much less atmospheric turbulence, allowing fine structures and motions in the Sun’s corona to be visible.

Images of the Sun will primarily be captured at visible light wavelengths, specifically the green light given off by highly ionized iron, superheated by the corona. This light is best for showing the fine structures in the Sun’s outer atmosphere. These images are complementary to space-based telescopes, like NASA’s Solar Dynamics Observatory, which takes images primarily in ultraviolet light and does not have the capacity for the high-speed imagery that can be captured aboard the WB-57F.”

Scientific research aside, NASA’s Canberras are also involved in some “special operations” every now and then.

For instance, in 2007 there were speculations and theories about the type of mission flown by the WB-57 in war zones fueled by pictures of the aircraft operating from Kandahar airfield in Afghanistan without the standard NASA logo and markings. Officially, the aircraft performed geophysical and remote sensing surveys as part of the U.S. aid to the Afghan reconstruction effort. The WB-57 collected  AVIRIS (Airborne Visible Infra Red Imaging Spectrometer) data that could be analyzed to provide information on mineral assemblages that could aid in resource and hazards assessments.

More recently, the WB-57s have also carried BACN – Battlefield Airborne Communications Node payloads in Afghanistan, often testing fnew sensors and antennas used by the BACN to relay comms between command and control centers and ground troops located within valleys and ridges in the Afghan mountains during specific testing campaigns from Nellis Air Force Base, Nevada.

Surely, with up to 6,000-lb payload carried and a pallet system under the main fuselage area, this aircraft can fulfil a wide variety of special data gathering missions,.




U.S. Tests Minuteman Missile Amid North Korean Tension and Proposed ICBM Upgrade

Latest Pacific ICBM Test Proves U.S. Readiness in Turbulent Region as Tensions Rise.

The U.S. Air Force has conducted an operational test of its LGM-30 Minuteman III Intercontinental Ballistic Missile (ICBM) from Vandenberg Air Force Base in California. The missile was unarmed, carrying a single test reentry vehicle according to the Global Strike Command.

Members of the 90th Missile Wing based at Warren Air Force Base, Wyoming conducted the test launch from California. The missile was launched yesterday morning, August 2, at 2:10 California time.

The single simulated reentry vehicle covered 4,200 miles on its way to the Kwajalein Atoll in the Marshall Islands. It landed in a missile test range used by the U.S.

In an operational attack the LGM-30 would be armed with a Multiple Independent Reentry Vehicle or “MIRV”. The MIRV payload on a Minuteman III includes three separate 300-500 kiloton nuclear warheads with independent targets. The warheads separate upon reentry into earth’s atmosphere above their predetermined targets and strike over a wide area. The use of multiple reentry vehicles for large warheads makes intercepting them over a large target area nearly impossible. The missile’s NS-50 inertial navigation system is largely immune to countermeasures once launched and is accurate to within 200 meters according to the Minuteman III’s builder, Boeing.

The operational LGM-30 Minuteman III is armed with multiple reentry vehicle warheads to strike several targets simultaneously. (Graphic: Wiki)

The U.S. currently fields 450 nuclear-armed operational LGM-30 Minuteman III missiles.

Set against the backdrop of this week’s missile launch, Boeing strategic deterrence chief Frank McCall told reporters the Minuteman III is an aging legacy ICBM platform from the 1950’s. According to McCall, the Minuteman ICBM platform was only intended to “Last a decade”.

During the late 1980’s the U.S. fielded the LGM-118 Peacekeeper ICBM. The LGM-118, popularly known as the “MX missile” was intended to be a survivable solution to a Soviet nuclear first strike on the continental U.S. Controversy over weapons treaties and basing for the MX missile limited its deployment to only 50 missiles using existing Minuteman missile silos until the program was cancelled entirely in September 2005.

An operational Boeing LGM-30 Minuteman III ICBM in its underground launch silo. (Photo: Boeing)

The U.S. Air Force has proposed the need for an all-new ICBM design concept to replace the aging Minuteman platform called the Ground Based Strategic Deterrent or “GBSD” missile program. Boeing, Lockheed and Northrop are each competing for the new GBSD contract.

The proposed new GBSD concept is intended to be an “open-architecture, modular” design that is highly adaptive to mission requirements and can be readily updated to maintain technical superiority and strategic relevance.

As with all major defense programs, costs for the proposed GBSD program have been criticized. Several media outlets have published estimates of $85 billion spread over a 20-year program for a force of 400 missiles.

While North Korea has made rapid and significant progress in their long-range missile program and nuclear program to include weapons research the strategic balance still tips very heavily in favor of the United States. The U.S. remains the only country to employ nuclear weapons operationally when it launched manned nuclear strikes from strategic bombers on the Japanese cities of Hiroshima and Nagasaki in 1945.

Since the operational nuclear strikes at the end of WWII and throughout the Cold War the U.S. has relied on a “nuclear triad” of three different strategic nuclear launch platforms that include Submarine Launched Ballistic Missiles (SLBMs), land-based Intercontinental Ballistic Missiles (ICBMs) and a variety of air-delivered nuclear weapons that include air-launched cruise missiles (ALCMs), Short Range Attack Missiles (SRAMs) and the now antiquated but still operational air-dropped nuclear bombs.

Time to strike targets in North Korea from missile bases in the U.S. Midwest and West coast may be less than 40 minutes from launch to impact, but submarine launched ballistic missiles deployed closer to the Korean peninsula would likely have weapons on target in much less time.

This most recent missile test was planned in advance of Korean tests according to the Pentagon, but it is reasonable to suggest it transmits a clear message that the U.S. nuclear deterrent is current and capable.



We Ran a Simulated ICBM Attack on the United States to Find Out: Could We Stop One?

We Went Inside Northrop Grumman Demonstration of Critical Anti-Ballistic Missile Technology.

Sometime in the future, diplomacy may fail.

An overnight incident in the Pacific between a U.S. Navy vessel and an adversary nation submarine causes a collision. A U.S. Air Force surveillance plane is fired upon as it flies near an international airspace boundary. A rogue nation continues ballistic missile testing.

What happens when it becomes a real world crisis with an ICBM (Intercontinental Ballistic Missile)?

A missile launch indication from U.S. Air Force Space Command surveillance satellites happens at 0234 Hrs local. It is 1734 GMT, 10:34 AM in San Francisco, California in the United States. Sunday morning.

Silent lighted icons flash red on a U.S. early warning display. Red circles appear around them. They are automatically given a series of numerical designations: speed, altitude. Sea based radars add to the intelligence picture. More data becomes available. Algorithms extrapolate trajectory, acceleration, apogee, reentry and deceleration into the atmosphere. They calculate the missile’s potential impact point.

Missile launch (credit: Northrop Grumman)

I sit in a chair watching the arc of the incoming ICBM headed to the United States’ west coast. The missile reaches its apogee, its maximum altitude in near space, and begins its terminal attack phase. It happens fast. I realize I am sweating. This feels very real. As real as today’s headlines. As the missile descends toward its target it begins to slow, but it is still moving faster than a rifle bullet.

The United States homeland is under attack by ICBMs launched from a rogue nation. It is the first time a nation state has attacked the U.S. homeland since WWII. A shooting war has started.

Intelligence analysts know the threat of real damage is moderate, but that doesn’t help. The warhead is likely small, crude by modern standards. It may not even function. The guidance system is not very precise. Chances are just as good that this warhead will land short in the Pacific or go long into the California mountains as it will detonate over the intersection of Market Street and 6th Street in the Financial District of San Francisco. It could spread radioactive material over several city blocks depending on the altitude it detonates at. It may even fail to detonate.

But that is not the point of this attack. The point is for a rogue nation to send a clear signal to the U.S. government: We can reach you. We have the will to attack. You are not safe.

Given recent headlines the ballistic missile threat to the United States is in the spotlight. What is the U.S. doing to counter the intercontinental ballistic missile threat?

Recently The Aviationist visited a secure facility at Northrop Grumman to learn more about the present and future of ballistic missile defense for the continental United States. We participated in a chilling drill to intercept an ICBM fired from somewhere on the Asian continent (Editor’s note: at the request of Northrop Grumman officials, we agreed not to name any potential adversary nation specifically).

Inside Northrop Grumman’s facility. (credit: The Aviationist.)

Northrop Grumman’s Ken Todorov, Director of Global Air and Missile Defense, told, “This literally is rocket science.”

Todorov directed us through a simulated ICBM intercept over the northern Pacific using Northrop Grumman’s technology contributions to our nation’s Ballistic Missile Defense Systems. Several new technologies are showcased within Northrop Grumman’s Ground-based Midcourse Defense (GMD) system. These systems are not yet operational, but they are must-haves for the nation’s ICBM defense. Given the threat from rogue nations in the Pacific region, Northrop Grumman’s new technologies are not just critical, but essential to our nation’s defense in the immediate term.

Without systems like GMD our west coast is, for the first time in history, under threat of nuclear attack from an ICBM in control of a rogue nation.

A constant stream of data from a wide array of sensors tracks the incoming ICBM. We see the track on our large monitor, nearly the width of the room, and on our individual monitors. It’s eerily quiet.

View to a kill: We run a simulation of an ICBM attack on the U.S. west Coast. (credit: TheAviationist.)

“Ground Based Interceptor launch, Ft. Greely, Alaska.” The systems operator tells us. The track of an ascending missile appears on our screen. It arcs upward gaining momentum, curving to match the downward trajectory of the incoming ICBM.

“Ground Based Interceptor launch, Vandenberg Air Force Base, California.” A second lighted trajectory traces across the screen, originating from the continental U.S. west coast. Two U.S. missiles are in the air, with new proposed Northrop Grumman technology melding the intercept data and targeting information to help provide mid-course intercept data.

The lines converge silently toward one another, beginning to form a brightly lighted “Y” shape on the displays. We all follow the lighted display across the screen, the ICBM arcing downward, the interceptors arcing to meet them.

“This is a bullet hitting a bullet in the exo-atmosphere” Todorov tells us, gesturing to the three missile tracks as they converge together on the big screen. The projectile we are trying to hit is moving at 10,000 MPH now, and it is about the size of a trashcan.

There are four phases of ICBM flight.

The boost phase is the most difficult to intercept the vehicle in, but is where the launch is detected. The ascent phase is vulnerable to detection by the Aegis weapons system and interception by RIM-156 and RIM-174 Standard Missiles launched from land or at sea from U.S. Navy surface ships like the Ticonderoga class cruisers and Arleigh-Burke class destroyers. In the third phase, the “mid-course” phase, the incoming ICBM could be targeted by the exo-atmospheric THAAD missile system or additional systems still in development.

Northrop Grumman technology has the capability to make all these systems perform better together, and improve the likelihood of intercepting missiles before they reach the United States or any user nation.

The lines on the big display in front of us converge.

They complete the big “Y” shape over the eastern Pacific off the California coast. There is no sound. In an instant all three missile designators disappear. The intercept was successful.

Missile tracking system close-up during ICBM launch simulation (credit: The Aviationist)

Using several new key technologies from Northrop Grumman we killed the incoming ICBM over the pacific before it reached the United States.

Later we see video of a successful, actual test intercept of an ICBM target during a demonstration of the Ground-based Midcourse Defense (GMD) element of the ballistic missile defense system on May 30, 2017. A ground-based interceptor was launched from Vandenberg Air Force Base in California. The “anti-missile” missile was armed with an exo-atmospheric kill vehicle projectile. It successfully intercepted and destroyed a simulated ICBM launched from Kwajalein Atoll in the Pacific with a direct collision at re-entry speed and high altitude. The demonstration was widely regarded as impressive proof of the capabilities of the ballistic missile defense system.

Northrop Grumman’s contribution to missile defense is significant. At the beginning of 2017 Ken Todorov told media that, “Members of Congress face a myriad of difficult questions about how to best protect our homeland from a growing number of threats. In this era of declining budgets, it is critical our top national priorities provide those at the “tip of the spear” with the tools to protect our homeland from existing and emerging threats.”

The headlines confirm the ICBM threat from the Pacific region is real, making the need for missile defense perhaps the most urgent defense agenda for the United States.

Note: The wishes to thank Lauren A. Green, Manager, Branding and External Communications for Northrop Grumman Mission Systems and the entire team at Northrop Grumman for their kind assistance with this article.


Mysterious X-37B Unmanned Space Plane Returns After Long, Secret Mission.

Mission of Secret Space Drone Remains Unknown Following 717-Day Orbit.

The secretive U.S. Air Force Boeing X-37B orbital unmanned spacecraft has landed at the Kennedy Space Center Shuttle Landing Facility on the east coast of Florida after an extended 717-day long mission in earth orbit. The specifics of the mission and the role of the X-37B remain classified.

The spacecraft touched down on runway 15 using normal aircraft-style landing gear, similar to the now-retired manned space shuttle program. Landing time was shortly before noon UTC or about 08:00 AM local time zone in the Eastern U.S. Despite its classified mission, video of the landing has been widely publicized.

The Air Force’s X-37B Orbital Test Vehicle mission 4 landed at NASA ‘s Kennedy Space Center Shuttle Landing Facility May 7, 2017. Managed by the Air Force Rapid Capabilities Office, the X-37B program is the newest and most advanced re-entry spacecraft that performs risk reduction, experimentation and concept of operations development for reusable space vehicle technologies.

Since the first flight of the X-37B was seven years ago, on April 22, 2010, it is reasonable to suggest the program has moved beyond the developmental stage and may now be an operational project. This has created substantial speculation about what the role of the X-37B may be.

Three theories have prevailed:

The first theory is that the X-37B is a space-based weapons platform. The spacecraft is pre-deployed into orbit armed with some type of weaponized re-entry vehicle that could be released over or near a specific target. It may also be a weapons delivery vehicle deployed in defense of space-based commercial assets such as the GPS satellite constellation. This theory is debunked by most analysts.

Secondly, and most plausibly, the spacecraft may be a platform for gathering intelligence. This could include signals intelligence such as activities of communications and surveillance satellites, both civilian and military. With approximately 2,271 satellites in orbit around the earth at various altitudes performing a wide variety of functions this theory tends to be the most realistic. It may also be ground mapping radar and other surveillance mediums. Since the large internal payload bay of the X-37B, about the size of the interior of a small general aviation aircraft such as a Cessna Caravan, is interchangeable the spacecraft could be “mission adaptive”, meaning it could be reconfigured for various types of surveillance. That this last mission was so long in duration suggests the X-37B may have had a means of transmitting intelligence from space back down to earth, somehow beyond the capabilities of existing space based surveillance platforms like satellites.

Lastly, and most unlikely, the X-37B remains a research project. It could potentially be a test bed for deploying satellites and servicing them robotically in space, releasing new orbital packages into space or any number of other roles not yet performed operationally. Given the duration and investment into the program along with the operational security surrounding it this theory seems least likely. A major part of X-37B operations are administered by DARPA, the Defense Advanced Research Projects Agency, a shadowy U.S. government agency located in Arlington, Virginia.

In a testing procedure, the X-37B Orbital Test Vehicle taxis on the flightline March 30, 2010, at the Astrotech facility in Titusville, FLa. (Courtesy photo)

Several techno-thriller writers have included the X-47B in their fictional story lines as both an ISR platform (intelligence, surveillance, reconnaissance) and a weapons delivery vehicle.

Whatever the role of the secret X-37B project the continuing operation of the spacecraft certainly verifies it is up to something. For the time being it remains one of many fascinating projects we are left to speculate about, which is sometimes more fun than actually knowing.